Manafacture: Casio
File size: 1.51 mb
File name:
|
manual abstract
. 3. 1)E k Converting an Input Value to the Calculator’s Default Angle Unit After inputting a value, press 1G(DRG') to display the angle unit specification menu shown below. Press the number key that corresponds to the angle unit of the input value. The calculator will automatically convert it to the calculator’s default angle unit. Example 1: To convert the following values to degrees: . radians = 90°, 50 grads = 45° 2 The following procedure assumes that the calculator’s default angle unit is degrees. E-99 z (15(.)/2) 1G(DRG')2(r)E 501G(DRG') 3(g)E Example 2: cos (. radians) = –1, cos (100 grads) = 0 z 12(cos)15(.) 1G(DRG')2(r))E 12(cos)100 1G(DRG')3(g))E Example 3: cos–1 (–1) = 180 cos–1 (–1) = . z 1. t 2. “cos–1” (fc), then E. 3. y1)E Z 1. t 2. “cos–1” (fc), then E. 3. y1)E k Exponential Functions and Logarithmic Functions • For the logarithmic function “log(”, you can specify base m using the syntax “log (m, n)”. If you input only a single value, a base of 10 is used for the calculation. • “ln(” is a natural logarithm function with base e. E-100 Example 1: log216 = 4 1. t 2. “log(” (fc), then E. 3. 21)(,)16)E Example 2: log16 = 1.204119983 1. t 2. “log(” (fc), then E. 3. 16)E A base of 10 (common logarithm) is used if no base is specified. Example 3: ln 90 (= loge90) = 4.49980967 1. t 2. “ln(” (fc), then E. 3. 90)E Example 4: ln e = 1 1. t 2. “ln(” (fc), then E. 3. S5(e))E Example 5: e10 = 22026.46579 1. t 2. “e^(” (fc), then E. 3. 10)E k Power Functions and Power Root Functions Example 1: 1.2 . 103 = 1200 1. 1.2*t 2. “10^(” (fc), then E. 3. 3)E E-101 Example 2: (1 + 1)2+2 = 16 1. (1+1)t 2. “^(” (fc), then E. 3. 2+2)E Example 3: 23 = 8 1. 2t 2. “3” (fc), then E. 3. E Example 4: ('2 – 1) = 1 2 + 1) (' 1. (t 2. “ '(” (fc), then E. 3. 2)+1)(t 4. “ '(” (fc), then E. 5. 2)-1)E Example 5: 5 32 = 2 2. “ x'(” (fc), then E. 3. 32)EExample 6: 3'5 + 3 –27 = –1.290024053 1. t2. “ 3'(” (fc), then E. 1. 5t 3. 5)+t 4. “ 3'(” (fc), then E. 5. y27)E E-102 k Rectangular-Polar Coordinate Conversion Rectangular Polar Coordinates Coordinates (Rec) (Pol) Converting to Polar Coordinates (Pol) Pol(X, Y) X: Specifies the rectangular coordinate X value Y: Specifies the rectangular coordinate Y value • Calculation result .is displayed in the range of –180° < . < 180°. • Calculation result . is displayed using the calculator’s default angle unit. • Calculation result r is assigned to variable X, while . is assigned to Y. Converting to Rectangular Coordinates (Rec) Rec(r,.) r : Specifies r value of polar coordinate .: Specifies .value of polar coordinate • Input value .is treated as an angle value, in accordance with the calculator’s default angle unit setting. • Calculation result x is assigned to variable X, while y is assigned to Y. • If you perform coordinate conversion inside of an expression instead of a stand-alone operation, the calculation is performed using only the first value (either the r-value or the X-value) produced by the conversion. Example: Pol ('2, '2) + 5 = 2 + 5 = 7 E-103 Example 1: (X, Y) = ('2, '2) > (r, .) z 1. t 2. “ Pol(” (fc), then E. 3. 15(')2) 1)(,)15(') 2))E Example 2: (r, .) = (2, 30) > (X, Y) z 1. t 2. “ Rec(” (fc), then E. 3. 21)(,)30)E k Other Functions This section explains how to use the functions shown below. !, Abs(, Ran#, nPr, nCr, Rnd( A Factorial (!) This function obtains the factorials of a value that is zero or a positive integer. Example: (5 + 3)! = 40320 1. (5+3)t 2. “ ! ” (fc), then E. 3. E E-104 A Absolute Value Calculation (Abs) When you are performing a real number calculation, this function simply obtains the absolute value. Example: Abs (2 – 7) = 5 1. t 2. “Abs(” (fc), then E. 3. 2-7)E A Random Number (Ran#) This function generates a 3-digit pseudo random number that is less than 1. Example: To generate three 3-digit random numbers. The random 3 digit decimal values are converted to 3digit integer values by multiplying by 1000. Note that the values shown here are examples only. Values actually generated by your calculator will be different. 1. 1000t 2. “Ran#” (fc), then E. 3. E E E E-105 A Permutation (nPr) and Combination (nCr) These functions make it possible to perform permutation and combination calculations. n and r must be integers in the range of 0 < r < n < 1 . 1010 . Example: How many four-person permutations and combinations are possible for a group of 10 people? 1. 10t 2. “P” (fc), then E. 3. 4E 1. 10t 2. “C” (fc), then E. 3. 4E A Rounding Function (Rnd) This function rounds the value or the result of the expression in the function’s argument to the number of significant digits specified by the number of display digits setting. Display Digits Setting: Norm1 or Norm2 The mantissa is rounded to 10 digits. Display Digits Setting: Fix or Sci The value is rounded to the specified number of digits. Example: 200 . 7 . 14 = 400 200/7*14E (Specifies three decimal places.) 1. s 2. “Fix” (fc), then E. 3. 3 FIX 4. E 5. E E-106 (Calculation is performed internally using 15 digits.)...
Other models in this manual:Calculators - FC-200V (1.51 mb)